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Abstract— Usually, it is very difficult to determine the exact
distribution for a test statistic. In this paper, asymptotic distri-
butions of locally most powerful invariant test for independence
of complex Gaussian vectors are developed. In particular, its
cumulative distribution function (CDF) under the null hypothesis
is approximated by a function of chi-squared CDFs. Moreover,
the CDF corresponding to the non-null distribution is expressed
in terms of non-central chi-squared CDFs for close hypothesis,
and Gaussian CDF as well as its derivatives for far hypothesis.
The results turn out to be very accurate in terms of fitting their
empirical counterparts. Closed-form expression for the detection
threshold is also provided. Numerical results are presented to
validate our theoretical findings.

Index Terms— Independence test, locally most powerful
invariant test, asymptotic series expansion, chi-squared
approximation, threshold calculation.

I. INTRODUCTION

VARIOUS practical problems can be cast as testing
whether sets of random variables are mutually indepen-

dent or not. As a result, testing for independence has inspired
much research over the years. Among the extensive literature,
the most classic topic is to detect the independence between a
j−set and a k−set of random variables in a ( j + k)−variate
Gaussian population [1]–[4]. This problem was generalised
to the case of multiple sets in [5], where the generalized
likelihood ratio test (GLRT), also called the Hadamard ratio
test, was derived. The Hadamard ratio test is widely employed
in numerous fields, such as spectrum sensing [6]–[8],
multiple-channel signal detection [9], [10] and adaptive
filtering [11].
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Since the Hadamard ratio test has its roots in the GLRT prin-
ciple, it does not perform well particularly when the alternative
hypothesis (H1) is near to the null hypothesis (H0), which
corresponds to the most challenging real-world applications.
For instance, the FCC regulations require reliable detection
of primary signals with signal-to-noise ratio (SNR) as low
as −18dB [12]. To handle the issue of signal detection at
very low SNRs, one needs to explore more efficient testing
approaches. Indeed, Nagao [13] has devised an efficient detec-
tor based on the asymptotic variance of the Hadamard ratio
test by replacing the unknown parameters with their maximum
likelihood (ML) estimates, which is equivalent to the Frobe-
nius norm of the sample correlation matrix. In the complex-
valued case, Lesham and van der Veen [10] have used the
Frobenius norm of the sample correlation matrix as an ad hoc
detector for spectrum sensing. Recently, Ramírez et al. [14]
have proved that this detector is exactly the locally most
powerful invariant test (LMPIT) for testing independence of
Gaussian vectors, which in turn indicates that it is optimal
in the case of close hypothesis (low SNR scenario). On the
other hand, a limiting distribution under null hypothesis has
been addressed in [14]. Nevertheless, the accuracy of the
limiting distribution considerably degrades as the sample
size n becomes small. This is because the limiting distribution
ignores the O(n−1) term, which is valid when n is large
enough but not appropriate as n is relatively small. Under
such conditions, the approximate formulae in [14] cannot
offer accurate threshold computation for the LMPIT. As a
matter of fact, an asymptotic series expansion can significantly
improve the accuracy of the approximation over the limiting
distribution for relatively small samples because the former
considers the higher-order terms which have been omitted by
the latter. Furthermore, the asymptotic series expansion usually
results in a null distribution expressed as the sum of weighted
chi-squared cumulative distribution functions (CDFs), which
is invertible, thus producing a closed-form expression for
threshold calculation. This in turn avoids numerically inverting
the null distribution and offers computational simplicity in
practical applications.

In the real-valued case, Nagao [13] has derived the asymp-
totic series expansions of the null distribution for the LMPIT
by inverting the asymptotic formula of the characteristic
function, which consists of the hypergeometric expressions
with matrix argument. The accuracy of the asymptotic results
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is up to O(n−2). Under the alternative hypothesis, however,
the asymptotic series expansion usually fails to yield an
accurate approximate distribution no matter if the alternative
hypothesis is close to or far from the null hypothesis. This is
due to the fact that the covariance matrix expansions are dif-
ferent under these two conditions [16], [17]. Since the LMPIT
is inherently devised for signal detection in close hypothesis,
it is of interest to determine its distribution in this scenario.
Note that Nagao [18] has derived a noncentral Chi-squared
approximation for the LMPIT under the close hypothesis in
the real-valued Gaussian situation, whose remainder term is
O(n− 3

2 ). The close hypothesis [18] means that the elements
of matrix Z � √

n(� − Ip) are of order O(1), where � is
the p × p covariance matrix and Ip is the p × p identity
matrix. In this work, the asymptotic series expansion method
is applied to the complex Gaussian scenarios, where the real
and imaginary parts are jointly Gaussian, that is, we extend
the previous results [13], [18] to the complex-valued case. For
far hypothesis, in which the elements of Z′ � � − Ip are of
order O(1), we have derived another accurate approximation
which is expressed as the sum of weighted Gaussian distrib-
ution and its derivatives. The derived distributions turn out to
be computationally simple and reasonably accurate, thereby
enabling us to reliably predict the false-alarm and detec-
tion probabilities of the LMPIT. The theoretical results are
advantageous over Monte Carlo simulation since the latter is
computationally expensive. Furthermore, we obtain a closed-
form formula that allows one to precisely set the threshold
for a prescribed false-alarm rate. The simple expression of the
decision threshold facilitates real-time processing in practical
applications. It should be pointed out that our results rely on
the assumption that p is much smaller than n. When p and n
are comparable, their accuracy cannot be guaranteed. Under
such circumstances, Mestre et al. [19] have derived the null
and non-null distributions of the LMPIT for the complex scalar
case via the central limit theorem (CLT). Note that the results
in [19] are sufficiently precise only when both p and n are
large and comparable in magnitude, thus being complementary
with the results in this work.

The remainder of this paper is organized as follows. The
LMPIT approach for signal detection is presented in Section II.
In Section III, the asymptotic null distribution of the LMPIT
is determined by inverting the asymptotic formula of its
characteristic function. Based on the so-obtained distribution,
we derive a simple and accurate analytical expression for
threshold computation. Under the close and far hypotheses,
the distribution is expanded up to O(n− 3

2 ), which is presented
in Sections IV and V. Section VI provides simulation results
to confirm the theoretical calculations. Finally, conclusions are
drawn in Section VII.

Throughout this paper, we use boldface uppercase letters
for matrices, boldface lowercase letters for column vectors,
and normal font letters for scalar quantities. The E[a] denotes
the expected value of a. The A ∈ R

p×q (Cp×q) means that
A is a p × q real (complex) matrix and Ai j (Ai, j ) stands
for the (i, j) block (entry) of A. The |A|, ||A||F and tr(A)
are the determinant, Frobenius norm and trace of A, and

diag(A11, · · · , Aqq) is a block-diagonal matrix formed by the
matrices A11, · · · , Aqq . Superscripts (·)−1, (·)T , (·)H and (·)∗
represent matrix inverse, transpose, Hermitian transpose and
conjugate operations. The 0p×q is the p × q zero matrix.
The x ∼ CN (μ,�) means that x follows a circular complex
Gaussian distribution with mean μ and covariance matrix �,
and ∼ signifies “distributed as”. When S follows a complex
Wishart distribution with n degrees-of-freedom (DOFs) and
covariance matrix � ∈ C

p×p , we write S ∼ Wp(n,�). The
χ2

f and χ2
f (σ

2) denote a central and non-central Chi-squared

distributed random variable, respectively, where f is the DOFs
and σ 2 is the noncentrality parameter. The A

1
2 (A− 1

2 ) is
the Hermitian square root of the Hermitian matrix A (A−1).
In addition, the exponential function of any Hermitian matrix
is defined as

eA = I + A + A2

2! + A3

3! + · · · + An

n! + · · · . (1)

II. LMPIT APPROACH

Suppose r ∈ C
p×1 follows a circular complex Gaussian

distribution CN (0p×1,�), which is partitioned into q sub-
vectors with lengths p1, ..., pq . That is,

r =
[
rT

1 , rT
2 , . . . , rT

q

]T
, (2)

where r j ∈ C
p j ×1, j = 1, · · · , q . Accordingly, the covariance

matrix � is expressed as

� = E[rrH ] =

⎡
⎢⎢⎢⎣

�11 �12 . . . �1q

�21 �22 . . . �2q
...

...
. . .

...
�q1 �q2 . . . �qq

⎤
⎥⎥⎥⎦, (3)

with � j k ∈ C
p j ×pk . Given n realizations of r, say,

r(1), . . . , r(n), our aim is to test whether the sub-vectors
r1, . . . , rq , are mutually independent. When the null hypoth-
esis is true, this means that the corresponding covariance
matrix � is block diagonal:

� =

⎡
⎢⎢⎢⎣

�11 0p1×p2 . . . 0p1×pq

0p2×p1 �22 . . . 0p2×pq

...
...

. . .
...

0pq×p1 0pq×p2 . . . �qq

⎤
⎥⎥⎥⎦. (4)

Consequently, the binary hypothesis test is1

H0 : � = diag(�11, · · · ,�qq) (5a)

H1 : � �= diag(�11, · · · ,�qq). (5b)

The LMPIT derived in [14] is given as

TLMP = ||C||2F , (6)

1Note that the hypothesis testing model in (5) cannot be rewritten
as a 2p−dimensional real-valued independence test, since the circularity
of x implies that its real and imaginary parts are identically distributed and
could be correlated [15, eq. (14)], which contradicts with the null hypothesis
model in the real-valued case.
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where

C = S
− 1

2
D SS

− 1
2

D , (7)

in which

S =
n∑

j=1

r( j)rH( j) (8)

is the sample covariance matrix (SCM) and SD is
defined as

SD = diag(S11, · · · , Sqq). (9)

Herein, S j k is defined in the same manner as � j k .2 It follows
from [14] that the test variable nTLMP − np is asymptot-
ically Chi-squared distributed. Therefore, for simplicity, its
monotonic form is used instead, that is

T = ntr(SS−1
D − Ip)

2. (10)

The hypothesis H0 is rejected when the test statistic T is larger
than a given threshold γ , i.e.,

T
H1
≷
H0

γ. (11)

On the other hand, the limiting null distribution of the
LMPIT has been approximated in [14] via that of the
Hadamard ratio test, which could be obtained by the Wilks’
theorem [20]. In particular, the approximation log |C| ≈
− 1

2 tr(C − Ip)2 is utilized in [14] to derive the limiting
distribution of the LMPIT. However, this approximation is
valid only for large sample scenario when C approaches the
identity matrix. For the small sample situation, the limiting
distribution of the LMPIT in [14] is not accurate any more.
On the other hand, the non-null distribution of the LMPIT has
not yet been studied in the literature. In this work, we derive
accurate null and non-null distributions for the LMPIT by
means of inverting the asymptotic formula of the characteristic
function of the LMPIT statistic.

III. NULL DISTRIBUTION

In this section, accurate expression for the asymptotic null
distribution of T is determined by inverting the asymptotic
formula of its characteristic function, which turns out to be
a special case of the general result derived in Section IV.
Moreover, closed-form formula for threshold calculation is
produced.

Note that the distributions of the test statistic T are identical
under population covariance matrices � and �

−1/2
D ��

−1/2
D .

Without loss of generality, we assume � = Ip under
the null hypothesis. As a result, it follows from [21] that
S ∼ Wp(n, Ip) with probability density function (PDF) of

fS(S|H0) = 1

�p(n)
|S|n−petr(−S), (12)

where etr(·) stands for exp(tr(·)). To alleviate the difficulty
in the derivation of the asymptotic distribution of T , we use

2In the following context, we use the subscript (·)D to represent the same
operation as S → SD .

the logarithm of S, i.e., Y � √
n log(S/n). It is shown in

Appendix A that the asymptotic distribution of Y is

fY(Y|H0) = c1×etr

(
−Y2

2

)[
1 − tr(Y3)

6
√

n
+ ptr(Y2)

12n

− tr2(Y)

12n
− tr(Y4)

24n
+ tr2(Y3)

72n
+O(n− 3

2 )

]
, (13)

where

c1 = N p(N− p
2 )π− p(p−1)

2 exp(−np)∏p
k=1(�(n + 1 − k))

. (14)

On the other hand, it is demonstrated in Appendix B that T
can be expressed in terms of Y as

T = f0(Y) + 1√
n

f1(Y) + 1

n
f2(Y) + O(n− 3

2 ), (15)

where

f0(Y) = tr(Y2 − Y 2
D ) (16a)

f1(Y) = tr
[
2Y 3

D − 3Y2YD + Y3
]

(16b)

f2(Y) = tr

[
−7

3
YDY3 + 7

12
Y4 + 5Y2Y 2

D + (YYD)2

−5

4
(Y2) 2

D − 3Y 4
D

]
. (16c)

Using (13) and (15), the characteristic function of T is
written as

C(t) = E[exp(ı T )]
= c

∫
exp

(
−1

2
tr(Y2) + (ı t) f0(Y)

)
×
[

1 + (ı t)√
n

f1(Y)

+ 1

n

{
ptr(Y2)

12
− tr2(Y)

12
− tr(Y4)

24
+ (ı t) f2(Y)

+1

2

(
(ı t) f1(Y) − tr(Y3)

6

)2
}

+O(n− 3
2 )

]
dY, (17)

where ı = √−1 and the integration is carried out over
the group of all p × p Hermitian matrices. As Y is
a p × p Hermitian matrix, it has p2 free parameters,
i.e., Y1,1, Y2,2, · · · , Yp,p , YR

1,2, YR
1,3, · · · , YR

p−1,p , YI
1,2,

YI
1,3, · · · , YI

p−1,p, where YR
j,k and YI

j,k denote the real and
imaginary parts of Y j,k( j < k), respectively. Furthermore,
the exponential term in (17) can be unfolded as

exp

(
−1

2
tr(Y2) + (ı t) f0(Y)

)

= exp

(
−1

2
(1 − 2i t)tr

(
Y2 + 2i t

1 − 2i t
Y 2

D

))

=
p∏

j=1

exp

(
− Y2

j, j

2v j, j

) p∏
j,k=1
j<k

exp

(
− (YR

j,k)
2

2v j,k

)
exp

(
− (YI

j,k)
2

2v j,k

)
,

(18)
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where

v j, j � 1 j = 1, . . . , p (19a)

v j,k � 1

2(1 − 2ı t + 2ı tδα( j )α(k))
j, k = 1, . . . , p, j < k,

(19b)

in which δab represents the Kronecker delta function and α( j)
is the integer such that

α( j )−1∑
s=1

ps < j ≤
α( j )∑
s=1

ps . (20)

It is observed that the right-hand side (RHS) of (18) can be
taken as a product of Gaussian PDFs (dropping the constant
terms), enlightening us to utilize the following integration:∫ ∞

−∞
xk 1√

2πv
exp

[
− x2

2v

]

︸ ︷︷ ︸
Gaussian PDF

dx =
{

0 if k is odd

v
k
2 (k − 1)!! if k is even,

(21)

which holds when v is a positive real number or a complex
number with positive real part. Therefore, the characteristic
function in (17) can be adopted as:

C(t) = c2 × φ
f
2 E

[
1 + (ı t)√

n
f1(Y)

+ 1
1

n

{
ptr(Y′2)

12
− tr2(Y′)

12
− tr(Y′4)

24
+ (i t) f2(Y′)

+1

2

(
(i t) f1(Y′)− tr(Y′3)

6

)2
⎫
⎬
⎭ + O(n− 3

2 )

⎤
⎦, (22)

where f = p2 − ∑q
i=1 p2

i , φ = (1 − 2ı t)−1, c2 = c1 ×
(2π)

p2

2 2− p(p−1)
2 and the mathematical expectation is calculated

with respect to the p × p matrix Y′, whose elements are
defined as

Y′
j, j = √

v j, j u j, j j = 1, · · · , p (23a)

Y′
j,k = Y′R

j,k + ıY′ I
j,k j, k = 1, · · · , p, j < k (23b)

Y′
k, j = Y′R

j,k − ıY′ I
j,k j, k = 1, · · · , p, j < k, (23c)

where

Y′R
j,k = √

v j,ku R
j,k j, k = 1, · · · , p, j < k (24a)

Y′ I
j,k = √

v j,ku I
j,k j, k = 1, · · · , p, j < k (24b)

with u j, j , u R
j,k and uI

j,k being mutually independent Gaussian
variables with mean 0 and variance 1. Subsequently,
the moments corresponding to (22) can be calculated using
(23) and (24), which are shown in Table III of Appendix C.

Notice that the distribution function is monotonic and has
the upper and lower bounds of 0 and 1, which indicates
that (22) equals 1 at t = 0. Unfortunately, an asymptotic
series expansion including c2 does not provide this property.
To circumvent this issue, we need to replace the constant
factor c2 with its Stirling’s approximation:

c2 = 1 − 2 p3 − p

12n
+ O

(
n−2

)
. (25)

The derivation of (25) is given in Appendix D. Note that this
replacement does not have an influence on the order of the
remainder term in the asymptotic series expansion. Substi-
tuting the so-obtained moments in Table III along with (25)
into (22) yields the asymptotic expression of the characteristic
function

C(t) = φ
f
2

[∑3
k=0 hkφ

k + O (
n−2

)]
, (26)

where

h0 = 1 + −p3 + p̃3

6n
(27a)

h1 = p3 − p p̃2

2n
(27b)

h2 = −p3 − p̃3 + 2 p p̃2

2n
(27c)

h3 = p3 + 2 p̃3 − 3 p p̃2

6n
(27d)

with p̃k = ∑q
j=1 pk

j . Note that the order of remainder terms
reduces to O(n−2) due to the fact that the odd moments of Y′
equal zero. Inverting the characteristic function, we have the
following result.

Theorem 1: Under the null hypothesis, the CDF of T is
approximated asymptotically up to O(n−2) by

Pr(T ≤ γ ) = ∑3
k=0 hkPr(χ2

f +2k ≤ γ ) + O(n−2). (28)

Inversely, for a given false-alarm probability Pfa, the
theoretical threshold is determined as

1 − Pfa = Pr (T ≤ γ ) . (29)

To proceed, the following result [13], [22] is needed.
Lemma 1: If the null distribution of a test statistic ε has the

following expansion

Pr(ε ≤ γ ) = Pr(χ2
f ≤γ )+ 1

n

∑3
k=0 βkPr(χ2

f+2k ≤ γ )+O(n−2)

(30)

with
∑3

k=0 βk = 0, then the asymptotic formula for its 100a%
point is

γ (Pfa) = u + 1

n

{
2β3u

f ( f + 2)( f + 4)

[
u2 + ( f + 4)u

+( f +2)( f +4)]+ 2β2u

f ( f +2)
(u+ f +2)+ 2β1u

f

}

+O
(

n−2
)
, (31)

where Pr(χ2
f ≥ u) = a.

Applying this lemma, it is easy to obtain the expression of
decision threshold for any given Pfa , that is

γ (Pfa) = u + 2h3u

f ( f + 2)( f + 4)

[
u2 + ( f + 4)u

+ ( f +2)( f +4)] + 2h2u

f ( f +2)
(u+ f +2) + 2h1u

f

+O
(

n−2
)

, (32)

where Pr(χ2
f ≥ u) = 1 − Pfa.
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It should be pointed out that although the asymptotic
distribution is the sum of weighted Chi-squared CDFs with
different DOFs, the threshold can still be expressed in terms
of 100(1 − Pfa)% point of the Chi-squared distribution with
DOF f , thereby avoiding the numerical evaluation of (29).
Hence, the computational cost in the theoretical threshold
calculation is very low.

IV. NON-NULL DISTRIBUTION UNDER

CLOSE HYPOTHESIS

In this section, the non-null distribution of T under close
hypothesis is derived in terms of noncentral Chi-squared
distributions, which can be used to determine the approxi-
mate detection probability (Pd). Similar to our argument in
Section III, we assume �D = Ip without loss of generality.
Following [16]–[18], the alternative hypothesis can be con-
sidered as “close” to the null hypothesis when the non-zero
elements of (� − Ip) are of order O(1/

√
n).

Under the alternative hypothesis, S follows a correlated
complex Wishart distribution Wp(n,�) with density

fS(S|H1) = 1

�p(n)|�|n |S|n−petr
(
−S�−1

)
. (33)

Applying the similar manipulations used in Appendix A,
the asymptotic distribution of Y under the close hypothesis
is calculated as

fY(Y|H1) = c1 × etr (s0)

×
[

1+ s1(Y)√
n

+ s2(Y)

n
+ s2

1 (Y)

2n
+O(n− 3

2 )

]
,

(34)

where

s0(Y) = −Y2

2
+ YZ − Z2

2
(35a)

s1(Y) = −Y3

6
− Z2Y + ZY2

2
+ 2tr(Z3)

3
(35b)

s2(Y) = ptr(Y2)

12
− tr2(Y)

12
− Y4

24
− Y2Z2

2
+ Y3Z

6
+ YZ3

−3tr(Z4)

4
(35c)

with

Z �
√

n(� − Ip). (36)

It follows that the characteristic function of T is

C(t) = c
∫

exp (s0(Y)+(ı t) f0(Y))

×
[

1+ 1√
n

(
s1(Y) + (ı t) f1(Y)

)+ 1

n

{
(ı t) f2(Y)

+ s2(Y)+ 1

2
(s1(Y) + (ı t) f1(Y))2

}
+O(n− 3

2 )

]
dY,

(37)

where

exp (s0(Y)+(ı t) f0(Y))

= exp

(
− 1

2φ

[
tr (Y − φZ)2+2ı tφtr

(
(Y−φZ) 2

D

)])
. (38)

Similar to our arguments in (17)–(22), the exponential function
of Y can be seen as a product of Gaussian PDFs, facilitating
our computation of the integration in (37). Consequently,
C(t) is expressed as

C(t) = c2×φ
f
2 E

[
1+ 1√

n

(
s1(Y′′)+(ı t) f1(Y′′)

)+ 1

n

{
s2(Y′′)

+ (ı t) f2(Y′′) + 1

2

(
s1(Y′′) + (ı t) f1(Y′′)

)2
}

+O(n− 3
2 )
]
, (39)

in which the mathematical expectation is computed with
respect to Y′′, defined as Y′′ = Y′ + Zφ. Furthermore,
the moments involved in (39) are listed in Table IV of
Appendix C. Thus, the characteristic function is calculated as:

C(t) = φ
f
2 exp

(
(ı t)a2φ

) [ 6∑
k=0

gkφ
k + O(n− 3

2 )

]
, (40)

where

g0 = 1 + 2a3

3
√

n
+ 2a2

3

9n
− 3a4

4n
+ b

2n
+ −p3 + p̃3

6n
(41a)

g1 = − a3√
n

− 2a2
3

3n
+ 3a4

2n
− 3b

2n
+ p3 − p p̃2

2n
(41b)

g2 = a2
3

2n
+ pa2

2n
+ b

2n
+ −p3 − p̃3 + 2 p p̃2

2n
(41c)

g3 = a3

3
√

n
+ 2a2

3

9n
− a4

n
− pa2

n
+ b

n
+ c

n
+ p3 + 2 p̃3 − 3 p p̃2

6n
(41d)

g4 = − a2
3

3n
− a4

4n
+ pa2

2n
− c

n
(41e)

g5 = a4

2n
− b

2n
(41f)

g6 = a2
3

18n
(41g)

with a j = tr(Z j ) b = tr
(
(Z2) 2

D

)
and c =∑p

j,k=1 p j tr(Z j kZkj ).
Inverting this characteristic function, the following theorem is
obtained.

Theorem 2: Under close hypothesis that (�−Ip) is of order
O(n− 1

2 ), the CDF of T is approximated asymptotically up to
O(n− 3

2 ) by

Pr(T ≤ γ ) =
6∑

k=0

gkPr(χ2
f +2k(σ

2) ≤ γ )+O
(

n− 3
2

)
(42)

with σ 2 = a2.
3

It should be noted that if we set � to the identity matrix,
the same asymptotic series expansion of the null distribution
as (28) can be obtained.

V. NON-NULL DISTRIBUTION UNDER FAR HYPOTHESIS

Under sufficiently high SNR conditions, the assumption of
close hypothesis becomes invalid. Therefore, it is necessary to
consider the situation when the alternative hypothesis is not

3Note that the noncentrality parameter σ 2 = a2/4 in [18] should be
corrected as σ 2 = a2/2.
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that close to the null hypothesis. For this situation, we assume
that the non-zero elements of (� − Ip) are of order O(1) and
define:

Z′ � � − Ip (43)

X � S − n�√
n

. (44)

Accordingly, the asymptotic expansion of T under this setting
can be expressed as (see Appendix B):

T = ntr
(
Z′2)+√

nq0(X)+q1(X)+ 1√
n

q2(X)+O(n−1), (45)

where

q0(X) = tr
[
2Z′(X − �XD)

]
(46a)

q1(X) = tr
[
2Z′(�(XD)2 − XXD) + (X − �XD)2] (46b)

q2(X) = tr
[
2(X − �XD)(�(XD)2 − XXD)

+ 2Z′(X(XD)2 − �(XD)3)
]
. (46c)

Furthermore, setting T ′ = (T − ntr
(
Z′2))/√n, the character-

istic function of T ′ has the form of

C ′(t) = E

[
exp

(
(ı t)q0(X)

){
1 + (ı t)√

n
q1(X) + 1

n

(
(ı t)q2(X)

+ 1

2
(ı t)2q2

1 (X)
)+ O(n− 3

2 )

}]
. (47)

Expressing q0(X) and q1(X) in terms of S, we have

q0(X) = 1√
n

tr(BS) (48a)

q1(X) = 1

n
tr
[
S2 − 2�SDS + (�SD)2 − 2Z′SSD

+ 2Z′�(SD)2 + 2nZ′S − 2nZ′�SD
]
, (48b)

where B = 2[Z′ − (Z′2)D]. Since B is Hermitian, it follows
from [21, eq. (5.10)] that the first term in (47) can be
determined as:

E
[
exp

(
(ı t)q0(X)

)]

=
∫

1

πn |�|n exp(−
n∑

j=1

r( j)H�−1r( j))dR

= |��−1|n, (49)

where � = (�−1 − (ıt)√
n

B)−1 and R = [r(1), . . . , r(n)]. Using

|e�| = etr(�), which holds for arbitrary square matrix �,
the determinant term in (49) can be further expanded as:

|��−1|n = Ip − (ı t)√
n

A|−n

= exp

(
(ı t)2tr(A2)

2

)
×
[

1 + (ı t)3

3
√

n
tr(A3)

+ 1

n

(
(ı t)4

4
tr(A4)+ (ı t)6

18
tr2(A3)

)
+O(n− 3

2 )

]
,

(50)

where A = QBQ and Q = �1/2. Moreover, similar to (49),
we have

E
[
exp

(
(ı t)q0(X)

)
Sr,sSk,l

]

=
∫

1

πn|�|n exp(−
n∑

j=1

r( j)H�−1r( j))

×
n∑

x,y=1

R∗
x,r Rx,sR∗

y,kRy,ldR

= |��−1|n
n∑

x,y=1

(
�r,s�k,l + σxy�k,s�r,l

)

= |��−1|n(n2�r,s�k,l + n�k,s�r,l). (51)

As the second term of (47) is of order O(n− 1
2 ), we only

need to expand its expectation up to O(n− 1
2 ). Using (51),

the expectation of the second term of (47) is computed in
Appendix E, which is given as

E
[
q1(X) exp

(
(ı t)q0(X)

)]

= exp

(
(ı t)2tr(A2)

2

)
×
[
d0+(ı t)2 d2

+ 1√
n

{
(ı t)d1+(ı t)3d3+(ı t)5d5

}]
+O(n−1), (52)

where d0, · · · , d5 are defined in Appendix E.
Similarly, for the n−1 terms in (47), we only need to

explicitly compute the dominant terms of their expectations.
To proceed, we define a new matrix W = Q−1XQ−1.
It follows from the Berry–Esseen theorem [23], [24] that W
obeys an asymptotic distribution as

f (W) = c3 × exp

(
−1

2
tr(W2)

)
+ O(n− 1

2 ), (53)

with c3 = 1/(π p2/22p/2). Therefore, we have,

E

[
exp

(
(ı t)q0(X)

)
(q2(X) + 1

2
q2

1 (X))
]

= c3 × etr

(
(ı t)2

2
A2

)∫
etr
[− 1

2
(W−(ı t)A)2]

×(q2(X)+ 1

2
q2

1 (X))dW+O(n− 1
2 ). (54)

Utilizing the similar manipulations as Section III, we could
take the term etr[−1/2(W − (ı t)A)2] as a product of p2

Gaussian PDFs, leading to

c3

∫
etr
[ − 1

2
(W − (ı t)A)2](q2(X) + 1

2
q2

1 (X))dW

= E
[
(ı t)q2(X′) + (ı t)2

2
q1(X′)2]. (55)

The mathematical expectation on the RHS of (55) is taken
with respect to X′ = Q(W′ + ı tA)Q, where the elements of
the p × p Hermitian matrix W′ are defined as

W′
j, j = u j, j j = 1, · · · , p (56a)

W′
j,k =

√
2

2
(u R

j,k + ıu I
j,k) j, k = 1, · · · , p, j < k,

(56b)
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Fig. 1. False-alarm probability versus threshold for different parameter set-
tings. (a) [p1, p2, p3, p4] = [1, 1, 1, 1], n = 50. (b) [p1, p2, p3] = [4, 6, 8],
n = 80.

TABLE I

APPROXIMATION ERRORS OF FALSE-ALARM PROBABILITY

where u j, j , u R
j,k and uI

j,k have been defined after (24) in
Section III. Furthermore, the moments involved in (55) are
listed in Tables V and VI of Appendix E. According to the
so-obtained moments, the expectations of q2(X′) and q2

1 (X′)
are determined as

E
[

exp
(
(ı t)q0(X′)

)
q2(X′)

] = (ı t)3b3 + (ı t)b1 (57a)

E
[

exp
(
(ı t)q0(X′)

)
q2

1 (X′)
] = (ı t)4b4 + (ı t)2b2 + b0. (57b)

Here, bk is the summation of product of the (ı t)k column and
weight w in Tables V and VI. Substituting (50), (52), (57)

Fig. 2. Analytical threshold selection: actual Pfa versus designed Pfa .
(a) [p1, p2, p3, p4] = [1, 1, 1, 1], n = 50. (b) [p1, p2, p3] = [4, 6, 8],
n = 80.

into (47), we obtain the characteristic function of T ′ as:

C ′(t) = etr

(
(ı t)2

2
A2

)[
1 +

6∑
k=1

(ı t)klk + O(n− 3
2 )

]
, (58)

where

l1 = 1√
n

d0 (59a)

l2 = 1

n
(b0 + b1 + d1) (59b)

l3 = 1√
n

[
d2 + tr(A3)

3

]
(59c)

l4 = 1

n

[
b2 + b3 + d3 + tr(A4)

4

]
(59d)

l5 = 0 (59e)

l6 = 1

n

[
b5 + d5 + tr2(A3)

18

]
. (59f)

Inverting this characteristic function and using the relation
T ′ = (T − ntr

(
Z′2))/√n, we obtain the following theorem.
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TABLE II

THRESHOLD APPROXIMATIONS FOR DIFFERENT FALSE-ALARM PROBABILITIES

Fig. 3. Detection probability versus threshold for different SNRs,
[p1, p2, p3] = [2, 3, 1], n = 100. (a) SNR = −10dB. (b) SNR = −2dB.

Theorem 3: Under far hypothesis that (� − Ip) is of order
O(1), the CDF of T is approximated asymptotically up to
O(n− 3

2 ) by

Pr(T ≤ γ ) = Q(x) +
6∑

k=1

(−1)k lk Q(k)(x)

τ k
+ O(n− 3

2 ), (60)

where τ = tr(A2), x = √
nτγ +ntr(Z′2) and Q j (x) represents

the j -th order derivative of the standard Gaussian CDF Q(x).

Fig. 4. Detection probability versus threshold for different SNRs,
[p1, p2, p3] = [2, 3, 1], n = 600. (a) SNR = −10dB. (b) SNR = −2dB.

It should be pointed out that τ becomes 0 as the alternative
hypothesis approaches the null hypothesis. Hence, (60) is valid
only when the alternative hypothesis is not close to the null
hypothesis.

Remark: We have derived two asymptotic non-null distri-
butions of the LMPIT, namely, (42) and (60) for close and
far hypotheses, respectively. Recall that we pick the close
hypothesis model when (� − Ip) is of order O(1/

√
n) and

far hypothesis model when it is of order O(1). Since (� − Ip)
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has p2 − p2 non-zero entries, it is reasonable to adopt (60) if
tr((� − I)2)/(p2 − p2) 
 n−1; otherwise (42) is used.

VI. NUMERICAL RESULTS

In this section, we carry out computer simulations to eval-
uate the accuracies of the derived asymptotic distributions for
the null and alternative hypotheses, and confirm our theoretical
computations for the decision threshold.

A. Null Distribution and Decision Threshold

Let us evaluate the accuracies of the false-alarm probability
as well as theoretical threshold calculated by (32). For the
purpose of comparison, we also present the results obtained
by the Wilks’ theorem in [14], that is

T ∼ χ2
f , (61)

and the result in [19] by CLT, namely

T ∼ N ( f, 2 p2). (62)

In order to quantify the approximation accuracy, we employ
the Cramér-von Mises test of fit to calculate the error between
the proposed and simulated CDFs, which is defined as [25]:

ε = 1

Q

Q∑
j=1

∣∣∣G(x j ) − Ĝ(x j )
∣∣∣
2
. (63)

In Fig. 1, the false-alarm probability is plotted as a function
of the threshold obtained from 106 Monte-Carlo trials with
[p1, p2, p3, p4] = [1, 1, 1, 1], n = 50 for Fig. 1(a) and
[p1, p2, p3] = [4, 6, 8], n = 80 for Fig. 1(b). Note that the line
of CLT is not plotted in Fig 1.(b) since the result given in [19]
considers only scalar case, namely, p1 = · · · = pq = 1. It is
indicated in Fig. 1 and Table I that the proposed approximation
yields a much smaller error than the existing approximations
derived from Wilks’ theorem and CLT. The approximation of
CLT leads to a relatively large error because it is inherently
derived for the scenario when p, n → ∞ with p/n → c > 0.
Thus, it is not appropriate for the small values of p. However,
simulations in [19] show that this approximation is reasonably
accurate when both p and n are large and comparable in
size.

Fig. 2 depicts the actual Pfa versus designed Pfa , where
the parameter setting remains unchanged. It is seen that the
threshold (32) yields a Pfa which aligns very well with the
theoretical one. However, the approximations using Wilks’
theorem and CLT result in quite large gaps between the actual
and designed false-alarm probabilities, which in turn implies
that the proposed approach is much more accurate than the
existing schemes.

Table II provides the threshold approximations for false-
alarm rates of 0.01 and 0.05. It is observed that the proposed
approach is able to provide an important correction for the
previous results in [14]. On the other hand, it is indicated that
(32) is capable of yielding a sufficiently precise threshold.

B. Non-Null Distribution

Let us now evaluate the accuracy of the approximate non-
null distributions of T , which is illustrated by the signal
plus noise model. More specifically, we assume that there

Fig. 5. Detection probability versus threshold for different SNRs,
[p1, p2] = [2, 2], n = 200. (a) SNR = [−9,−10]dB. (b) SNR = [−1, 0]dB

are d independent sources with powers SNR1, · · · , SNRd .
Meanwhile, the noise covariance is set to be Ip without loss
of generality. The channel matrix H = [h1, . . . , hd ] has i.i.d.
entries that follow standard complex Gaussian distribution and
each channel vector is normalized as h̄ j = √

ph j /||h j ||.
In the sequel, the population covariance matrix is represented
as � = Ip + ∑d

j=1 h̄ j h̄H
j SNR j . In Fig. 3(a), we consider the

scenario where there is d = 1 signal source with power of 0.1,
which indicates that (42) should be applied here. Moreover,
the observation dimension is [p1, p2, p3] = [2, 3, 1] and the
number of samples is n = 100. It is seen that the agreement
between the theoretical and simulated Pd is quite good.
More precisely, the approximate error equals 4.1524 × 10−7.
In Fig. 3(b), the SNR is changed to −2dB. Accordingly,
(60) is used here. The error between the approximate and
simulated detection probabilities is 1.2430 × 10−5. In Fig. 4,
we modify n to be 600, but keep other parameters unchanged.
It is observed that the agreement between the simulated and
analytical results is better than that in the case of n = 100,
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and the approximation error reduces to 2.6571 × 10−7 and
2.5546 × 10−7 at SNR = −10dB and SNR = −2dB,
respectively. This indicates the errors decrease as the number
of samples increases.

Another parameter setting is used in Fig. 5, that is, d = 2,
[p1, p2] = [2, 2], n = 200 and SNR equals [−9,−10]dB
in Fig. 5(a) and [−1, 0]dB in Fig. 5(b). The errors between
the approximate and simulated detection probabilities are
8.8111 × 10−8 and 1.3338 × 10−6 for the low and high SNR
cases, respectively. This confirms that the analytical calcula-
tions are very accurate for both single- and multiple-source
cases.

VII. CONCLUSION

In this paper, we have derived the asymptotic formulae
for the distributions of the LMPIT by inverting the asymp-
totic series expansion of its characteristic function. Under
the null hypothesis, the result is expressed as a function of
Chi-squared CDFs, ending up with a simple and accurate
expression for threshold calculation. Besides, the non-null
distributions are derived for the close hypothesis in terms of
non-central Chi-squared CDFs, whereas for the far hypothesis
in terms of weighted sum of Gaussian CDF and its derivatives.
The convergence rates are O(n−2) and O(n− 3

2 ) for the null
and alternative hypotheses, respectively. Extensive simulation
results demonstrate the accuracies of the derived asymptotic
distributions.

APPENDIX A
ASYMPTOTIC DISTRIBUTION OF Y

In the real-valued situation, the Jacobian transformation of
S to Y is obtained from [26] (See Lemma 8), which can be
generalized to the complex-valued case.

Let Y = UH�U and S = UH�
′
U be the eigenvalue

decompositions (EVDs) of Y and S, respectively. Here,
� = diag(λ1, . . . , λp) and �

′ = diag( f (λ1), . . . , f (λp))

with f (x) = ne
x√
n . Then the Jacobian transformation between

S and Y is expressed as
∣∣∣∣
∂S
∂Y

∣∣∣∣ =
∣∣∣∣∣

∂S

∂(U,�
′
)

· ∂(U,�
′
)

∂(U,�)
· ∂(U,�)

∂Y

∣∣∣∣∣. (64)

Note that the second term is easily calculated as
∣∣∣∣∣
∂(U,�

′
)

∂(U,�)

∣∣∣∣∣ =
∣∣∣∣∣
∂(�

′
)

∂(�)

∣∣∣∣∣ =
p∏

i=1

f
′
(λi ) = n

p
2 etr

(
Y√

n

)
. (65)

On the other hand, we have

Jp �
∣∣∣∣

∂Y
∂(U,�)

∣∣∣∣ =
∣∣∣∣∣
∂(U

′
0YU0)

∂(U,�)

∣∣∣∣∣ =
∣∣∣∣
∂G
∂U

∣∣∣∣
∣∣∣∣∣
∂(U

′
0YU0)

∂(�, G)

∣∣∣∣∣

=
∣∣∣∣
∂G
∂U

∣∣∣∣
∣∣∣∣

∂Y∗

∂(U, G)

∣∣∣∣ =
∣∣∣∣
∂G
∂U

∣∣∣∣ J∗
p. (66)

where U0 is an orthogonal matrix such that U0U is approxi-
mately equal to the identity matrix, namely, U0U = Ip + G

and UU0 = Ip − G. Then, we obtain

Y∗ =
[

Y∗
p−1 ξ

ξ
′

y

]

= � + �G − G� − G2

=
[

�p−1 0
0 λp

]
+
[

Gp−1 τ

−τ
′

0

] [
�p−1 0

0 λp

]

−
[

�p−1 0
0 λp

]
− G2

=
[
�p−1+ �p−1Gp−1− Gp−1�p−1 �p−1τ − λpτ

−τ
′
�p−1−λpτ

′
λp

]
−G2.

(67)

It follows that

J∗
p =

∣∣∣∣
∂(Yp−1, ξ , y)

∂(�p−1, Gp−1, τ , λp)

∣∣∣∣

= J∗
p−1

∣∣∣∣
∂(ξ , y)

∂(ξ , λp)

∣∣∣∣
∣∣∣∣
∂(ξ , λp)

∂(τ , λp)

∣∣∣∣

=
∣∣∣∣
∂ξ

∂τ

∣∣∣∣
∣∣∣∣

∂y

∂λp

∣∣∣∣ J∗
p−1

= ∣∣�p−1 − λpIp−1
∣∣2 J∗

p−1

= J∗
p−1

p−1∏
i=1

(λp − λi )
2

=
∏
i> j

(λi − λ j )
2. (68)

Therefore, we have

∣∣∣∣
∂S

∂(U,�
′
)

· ∂(U,�)

∂Y

∣∣∣∣ =
⎡
⎣

p∏
i> j

f (λi ) − f (λ j )

λi − λ j

⎤
⎦

2

. (69)

Substituting (69) and (65) into (64), the Jacobian transforma-
tion of S to Y is
∣∣∣∣
∂S
∂Y

∣∣∣∣ = n
p2

2 etr

(
Y√

n

) p∏
i> j

⎡
⎣exp( 1√

n
λi ) − exp( 1√

n
λ j )

1√
n
λi − 1√

n
λ j

⎤
⎦

2

.

(70)

Moreover, the last term on the RHS of (70) can be further
expanded for large n, that is,

p∏
i> j

⎡
⎣exp( 1√

n
λi ) − exp( 1√

n
λ j )

1√
n
λi − 1√

n
λ j

⎤
⎦

2

= 1+ p−1√
n

tr(Y)+ 6 p2−12 p+5

12n
tr2(Y)+ p

12n
tr(Y2)+O(n−3

2 ).

(71)

Since Y is a square matrix, we have |eY| = etr(Y). It follows
that the asymptotic distribution of Y is given by

fY(Y|H0) = c·etr

(
n− p+1√

n
Y−ne

1√
n

Y
)[

1+ p−1√
n

tr(Y)

+6 p2−12 p+5

12n
tr2(Y)+ p

12n
tr(Y2)+O(n− 3

2 )

]
,

(72)
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where c = N p(N− p
2 ) π− p(p−1)

2
[∏p

k=1(�(n + 1 − k))
]−1

.
Notice that

e
1√
n

Y = Ip + Y√
n

+ Y2

2n
+ Y3

6
√

n3 + Y4

24n2 + O(n− 5
2 ), (73)

which, when substituted into (72), leads to

fY(Y|H0) = c1 ·etr

(
−Y2

2

)[
1 − tr(Y3)

6
√

n
− tr2(Y)

12n

+ ptr(Y2)

12n
− tr(Y4)

24n
+ tr2(Y3)

72n
+O(n− 3

2 )

]
, (74)

where c1 = c × exp(−np).

APPENDIX B
ASYMPTOTIC SERIES EXPANSION OF T

The asymptotic series expansion of S is easily calculated as

S
n

= Ip + Y√
n

+ Y2

2n
+ Y3

6
√

n3 + Y4

24n2 +O(n− 5
2 ). (75)

To determine the expansion of S−1
D , we need the result

from [27, p. 55], which is presented as follows.
Lemma 2: Let A ∈ C

p×p and limk→∞ Ak = 0p×p . Then
Ip − A is nonsingular and

(Ip − A)−1 =
∞∑

k=0

Ak . (76)

As a result, we can expand S−1
D as

(
SD

n

)−1

=
(

Ip + YD√
n

+ (Y2)D

2n
+ (Y3)D

6
√

n3

+ (Y4)D

24n2 + O(n− 5
2 )

)−1

= Ip − 1√
n

YD + 1

n

[
−1

2

(
Y2

)
D

+ Y 2
D

]

+ 1√
n3

[
−1

6
(Y3)D + YD(Y2)D − Y 3

D

]

+ 1

n2

[
1

3
(Y3)DYD + 1

4
(Y2) 2

D − 1

24
(Y4)D

−3

2
Y 2

D (Y2)D + Y 4
D

]
+ O(n− 5

2 ). (77)

Substituting (75) and (77) into (10) leads to the asymptotic
series expansion of T :

T = tr(Y2 − Y 2
D ) + 1√

n
tr
[
2Y 3

D − 3Y2YD + Y3
]

+ 1

n
tr

[
7

12
Y4 + 5Y2Y 2

D − 7

3
YDY3 + (YYD)2

− 5

4
(Y2) 2

D − 3Y 4
D

]
+ O(n− 3

2 ). (78)

Alternatively, when using X = (S− n�)/
√

n, it is straightfor-
ward to obtain

S = √
nX + n� (79)

and (
SD

n

)−1

= Ip − 1√
n

XD + 1

n
(XD)2 − 1√

n3 (XD)3

+ 1

n2 (XD)4 + O(n− 5
2 ). (80)

Combining (79) and (80) together, we eventually have

T = ntr(Z′2) + √
ntr

[
2Z′(X − �XD)

]
+tr

[
2Z′(�(XD)2 − XXD) + (X − �XD)2]

+ 1√
n

tr
[
2Z′(−�(XD)3 + X(XD)2)

+2(X − �XD)(�(XD)2 − XXD)
] + O(n−1). (81)

APPENDIX C
DERIVATION OF MOMENTS IN (22) AND (39)

In this appendix we present the moments involved in (22)
and (39), as well as typical examples of their derivations.

According to (19), the expectation of tr(Y′4) in (22) is,

E[tr(Y′4)]
= E

[
2

p∑
j,k,l=1
j �=k �=l

Y′
j,kY′

k, j Y′
j,lY′

l, j +
p∑

j,k=1
j �=k

Y′2
j,kY′2

k, j

+ 4
p∑

j,k=1
j �=k

Y′2
j, j Y

′
j,kY′

k, j +
p∑

j=1

Y′4
j, j

]

= 2[(p3 + p2 − 2 pp2 + p3 − p2)φ2

+ 2(−p3 + pp2+ p2 − p2)φ + p3 − 3 p2 + 2 p]
+ [2(p2 − p2)φ

2 + 2 p2 − 2 p]
+ 4[(p2 − p2)φ + p2 − p] + 3 p

= (2 p3+2 p̃3−4 p p̃2)φ
2+(4 p p̃2−4 p̃3)φ+2 p̃3+ p. (82)

Similarly, the other moments in (22) are also calculated, which
are tabulated in Table III.

In (39), the random matrix Y′′ is further influenced by
an additive term φZ. Therefore, the expectations should be
calculated in a slightly different manner. Here we take tr(Y′′4)
as an example. The detailed calculations of the remaining
components are omitted due to the space limit, but their
expressions are given in Table IV. The mathematical expecta-
tion of tr(Y′′4) is

E[tr(Y′′4)]
= 2

p∑
j,k,l=1
j �=k �=l

(|Z j,k|2φ2 + σ 2
j,k)(|Zl,k |2φ2 + σ 2

l,k)

+
p∑

j,k=1
j �=k

(|Z j,k |4φ4 + 4|Z j,k|2σ 2
j,kφ

2 + 2σ 2
j,k)

+4
p∑

j,k=1
j �=k

(|Z j,k|2φ2 + σ 2
j,k) +

p∑
j=1

3

= a4φ
4+(4 pa2 − 4c)φ3+(2 p̃3−4 p p̃2+2 p3+4c)φ2

+(4 p p̃2 − 4 p̃3)φ + 2 p̃3 + p, (83)

where σ 2
j,k = 2v j,k .
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TABLE III

EXPECTED VALUES INVOLVED IN (22)

APPENDIX D
STIRLING’S APPROXIMATION OF c2

In this appendix, we calculate Stirling’s approximation of
the constant c2, which is expressed as

c2 = (2π)
p
2 n(n− p

2 )p exp(−pn)

[ p∏
k=1

�(n + 1 − k)

]−1

=
p∏

k=1

[√
2π

n(n−k+ 1
2 )

�(n + 1 − k)
exp(−n)

]
. (84)

It follows from [28] that the Stirling’s formula is

(n − k)n−k+ 1
2
√

2π

en−k�(n + 1 − k)
= 1 − 1

12(n − k)
+ O(n−2). (85)

With the use of (85), each product term in (84) is

√
2πn(n−k+ 1

2 )e−n

�(n + 1 − k)
= e−k

(
n

n − k

)n−k+ 1
2

×
[

1 − 1

12(n − k)
+ O(n−2)

]
. (86)

Note that

(
n

n − k

)n−k+ 1
2 = e

k
n−k (n−k+ 1

2 ) − k2

2n
ek + O(n−2). (87)

which, when substituted into (86), yields

√
2πn(n− p

2 )e−n

�(n + 1 − k)
=

[
e

k
2(n−k) − k2

2n
+ O(n−2)

]

×
[

1 − 1

12(n − k)
+ O(n−2)

]
. (88)

Consequently, the Stirling’s approximation for c2 is

c2 =
p∏

k=1

{[
e

k
2(n−k) − k2

2n
+ O(n−2)

]

×
[

1 − 1

12(n − k)
+ O(n−2)

]}

=
[

1 − 2 p3 − 2 p

12n
+ O(n−2)

][
1 − p

12n
+ O(n−2)

]

= 1 − 2 p3 − p

12n
+ O(n−2). (89)

APPENDIX E
DERIVATION OF MOMENTS IN (52) AND (55)

For illustrative purposes, we first consider the term tr(S2):

E
[

exp
(
(ı t)q0(X)

)
tr(S2)

]

= E
[

exp
(
(ı t)q0(X)

) p∑
i, j=1

(Si, j S j,i )
]

= |��−1|n(n2
p∑

i, j=1

(�i, j � j,i ) + n�i,i � j, j ))

= |��−1|n(n2tr(�2) + ntr2(�)). (90)

Using similar manipulations, the mathematical expectations
of the subsequent terms are readily obtained, which, when
summed up, leads to

E
[
q1(X) exp

(
(ı t)q0(X)

)]

= |��−1|n
{

n2[tr(�2) + tr(��D�) + tr(��D��)

+ tr(Z′��D) + tr(Z′��2
D)
] + n

[
tr2(�) + tr2(�G�)

+
q∑

x,y=1

tr2(�xy�yx) + tr(Z′�G) + tr(Z′�G�D)

+tr(Z′�) + tr(Z′��D)
]}

, (91)
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TABLE IV

EXPECTED VALUES INVOLVED IN (39)

TABLE V

EXPECTED VALUES INVOLVED IN E[q2(X′)]

where G = diag(tr(�11)Ip1, · · · , tr(�qq)Ipq ). Applying (50)
again we have

E
[
q1(X) exp

(
(ı t)q0(X)

)]

= exp

(
(ı t)2tr(A2)

2

)
×
[
d0+(ı t)2 d2

+ 1√
n

{
(ı t)d1+(ı t)3d3+(ı t)5d5

}]
+O(n−1), (92)

where

d0 = tr(�2) +
q∑

x,y=1

tr2(�xy� yx) − 2tr(�2G1) (93a)

d1 = 2tr(�)tr(A)−2tr(�2G2)− 2tr(Z′VG1)−2tr(�G1VD)

+ 2tr(Z′�G1V)+2
q∑

x,y=1

tr(�xy� yx)tr(Vxy� yx) (93b)

d2 = tr(�A�A) − 2tr(�(V)DV) + tr(�VD�VD)

− 2tr(Z′VVD) + 2tr(Z′S(VD)2) (93c)
d3 = 2tr(�A�A2) + 2tr(�VD�PD) − 2tr(�VDP)

− 2tr(�PDV) − 2tr(Z′PVD) − 2tr(Z′VPD)

+ 2tr(Z′�PDVD) + 2tr(Z′�VDPD) (93d)

d5 = tr(A3)

3

[
tr(�A�A) − 2tr(�VDV) + tr(�VD�VD)

− 2tr(Z′VVD) + 2tr(Z′S(VD)2)
]

(93e)
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TABLE VI

EXPECTED VALUES INVOLVED IN E[q2
1 (X′)]



1798 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 64, NO. 3, MARCH 2018

with V = QAQ, P = QA2Q, G1 = diag(p1Ip1 , · · · , pqIpq )
and G2 = diag(tr(V11)Ip1 , · · · , tr(Vqq)Ipq ).

On the other hand, the mathematical expectations in
(54) can be obtained in an identical manner as (83), which
are given in Tables V and VI. Here we have G3 = diag
(tr((Z′�)11)Ip1, · · · , tr((Z′�)qq)Ipq ), G4 = diag (tr
((QZ′Q)11)Ip1, · · · , tr((QZ′Q)qq)Ipq ) and G5 = diag
(tr((�2)11)Ip1, · · · , tr((�2)qq)Ipq ).
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